
An open integration framework
for high performance middleware

January 20, 2015 — Version r4762M

Installation guide

&
User’s manual

Alexandre Denis — Alexandre.Denis@inria.fr
Christian Pérez — Christian.Perez@inria.fr
Christophe Frézier — christophe.frezier@labri.fr

$Revision: 4466 $ $Date: 2012-05-22 10:08:35 +0200 (mar., 22 mai 2012) $

Copyright c©2002 INRIA and the University of Rennes 1.
Written by Alexandre Denis, Christian Pérez and Christophe Frézier.

Padico is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details, given in
appendix A page 57 of this manual.

This Padico package contains external software packages subject to copyright. PM2 and
Expat are required by PadicoTM; omniORB and MPICH have been modified for use within
PadicoTM. They are distributed in the same bundle as Padico for convenience; they remain
the copyright property of their respective authors. These software packages are stored in
PadicoTM-r4762M/opt/.

PM2 — PM2 is distributed under the terms of the GNU General Public License version 2.
The list of authors can be found in the file PadicoTM-r4762M/opt/pm2/AUTHORS.
The PM2 version supplied with Padico has been tweaked for special use in PadicoTM.

Expat 2.0 — Copyright Thai Open Source Software Center Ltd and Clark Cooper. Ex-
pat is distributed under the term of its own license as found in PadicoTM-r4762M
/opt/libexpat.org/COPYING

omniORB 4 — Copyright AT&T Cambridge. omniORB programs are dis-
tributed under the terms of the GNU General Public License version 2,
omniORB libraries are distributed under the terms of the GNU Library
General Public License. The list of authors can be found in the file
MiddlewareServices/omniORB-4.0/package/omniORB-4.0.6.tar.gz
(./CREDITS). The omniORB version supplied with Padico has been modified for
use within PadicoTM.

MPICH 1.2 — Copyright University of Chicago and the Mississippi State University. The
license and authors are given in MiddlewareServices/mpich-1.1.2/package/
mpich-1.2.4-padico-svn20060411.tar.gz (./COPYRIGHT). Additionally,
we provide a Madeleine driver for MPICH (ch_mad). Original ch_mad for MPICH
by Guillaume Mercier and Loïc Prylli, modified by Alexandre Denis for use within
PadicoTM.

Warning

This document is based on an old version of PadicoTM and is mostly
outdated. For up-to-date information, please see README files in
PadicoTM directories from svn trunk.

Contents

1 What is Padico? 7
1.1 Philosophy of PadicoTM . 7
1.2 Understanding PadicoTM . 8
1.3 Getting help. 8

2 Installation and configuration 9
2.1 System requirements . 9
2.2 Software requirements . 9
2.3 Installation and configuration . 11
2.4 Troubleshooting . 13
2.5 Middleware services setup . 15

3 PadicoTM tutorial 17
3.1 Getting started: a step by step example . 17
3.2 NetSelector . 22
3.3 MPI with PadicoTM . 28
3.4 CORBA with PadicoTM . 29
3.5 Padico-control and Firewalls . 31
3.6 Topology manipulation . 34

4 myCORBA reference manual 37
4.1 Setting up myCORBA: mycorba-admin . 37
4.2 Managing a CORBA name server with myCORBA: mycorba-ns 38
4.3 myCORBA in your makefiles . 39

5 PadicoTM reference 41
5.1 PadicoTM Module Specification . 41
5.2 PadicoTM Services Reference . 48
5.3 PadicoTM Core Interface . 50
5.4 Commands manual . 51

6 Questions & Answers 55

A License 57

5

6

B Advanced configuration 65
B.1 PadicoTM framework advanced configuration 65
B.2 Custom core & services setup . 66

C Hello CORBA Examples 69
C.1 The Hello-CORBA client (Hello-client.cc) 69
C.2 The Hello-CORBA server (Hello-server.cc) 70

Chapter 1

What is Padico?

adico is an environment designed for high performance parallel computing, dis-
tributed computing, and software components. It is composed of four entities:

PadicoTM is the nickname for Padico Task Manager, the Padico high performance runtime
layer. PadicoTM provides the user with fast middleware systems such as CORBA, MPI

and Java TM implementations over high performance networks such as Myrinet, SCI

or VIA and user-level multi-threading. Padico version r4762M comprises CORBA and
MPI implementations. Java support is experimental.

PadicoControl is a set of graphic and command-line tools for deploying PadicoTM, and
remotely loading, running, and monitoring Padico applications.

myCORBA is a set of tools which hides the differences between ORB vendors for compiling
and running CORBA applications.

PaCO++ is the new generation of parallel CORBA objects framework. It adds portability to
PaCO. PaCO++ is not included in Padico version r4762M .

1.1 Philosophy of PadicoTM

PadicoTM is the runtime environment for Padico. It is composed of a core which provides a
high-performance framework for networking and multi-threading, and services plugged into
the core. The PadicoTM core aims at making the different services running at the same time
run in a cooperative way rather than competitive. Basically, every piece of code in Padico is
embedded into a module. For example, binary code is embedded into binary libraries (“.so”
files) and a description file (written in XML). Modules may be loaded, run and unloaded
dynamically, on one node, on all nodes, or on a group of nodes.

Services are modules plugged into the core. Usually, applications do not directly use the
PadicoTM core specific interface. Instead, they use a standard API provided as a Padico
service. The PadicoTM core brings many features to the services. For example, thanks to the
PadicoTM core, services:

• take benefit from high-performance networks (Myrinet, SCI, VIA, INFINIBAND) where
they are available;

• use the Marcel high-performance multi-threading system;

7

8 CHAPTER 1. WHAT IS PADICO?

• multiplex their accesses to the network, without lowering the performance;

• are usable at the same time, in the same process;

• are dynamically loadable and unloadable.

The core itself is composed of three modules: Puk (a nickname for Padico µ-kernel) is the
foundation module. Its task is to manage modules (loading, running and unloading). The
ThreadManager manages multi-threading in a coherent way, it provides hooks for periodic
operations, and manages queues of I/O operations so that they do not block the whole pro-
cess. The third module of the PadicoTM core is called NetAccess. It multiplexes the network
accesses so that several modules can use networks that require exclusive access otherwise.
Hence different middlewares (CORBA, MPI) can efficiently share the same process and the
same network without disturbing each other.

1.2 Understanding PadicoTM

In order to reach high performance, PadicoTM redefines some known concepts. The steps
involved in using PadicoTM are the following:

Framework installation — The first step is the installation of the framework. It is usually
done once for a given platform.

Core & services setup — This step aims at building a specific flavor of the runtime layer. A
flavor is composed of: SMP/mono, network type, debug/optimize flags. It should be
done once for each flavor, and in particular once for each network type. As a flavor is
determined by the included core, it is often referred to as a “core flavor”.

User module setup — User applications are stored in modules. Modules are built through
a “linker-like” command.

Boot — To be able to load and run user modules, you should first launch the processes. This
step is called “boot” in PadicoTM. It starts processes on every nodes which are about
to be used by user modules.

Execution steering — When the processes are started, you can then load, run and unload
modules in them. This is usually remotely done through the use of a steering tool of
PadicoControl.

1.3 Getting help.

If you have questions about Padico or have found a bug, please send an electronic mail to
<padico-users@listes.irisa.fr>. Users are encouraged to subscribe to the Padico
users mailing list at: https://www.irisa.fr/wws/info/padico-users/ (notice the
the https, not http).

Padico is a research prototype, thus is subject to quick changes. For up-to-date infor-
mation about Padico, please visit the Padico web site at http://runtime.bordeaux.
inria.fr/PadicoTM/.

Chapter 2

Installation and configuration

2.1 System requirements

The supported systems are PC/Linux, Sparc/Solaris, SGI/Irix and PowerPC/Mac OS X sys-
tems. The supported networks are Myrinet, Myrinet-2000, SCI, VIA, Quadrics, INFINIBAND,
and all networks for which the OS supplies TCP/IP. Padico has been tested successfully on:

• x86 and x86_64, Debian GNU/Linux 2.6.x — random bugs in dynamic library opera-
tions have been reported with glibc 2.2; it is fixed in glibc 2.3 and later;

• Sun Ultra-1 (sparcv9), Solaris 5.6 & 5.7; Sun Ultra-2, Solaris 5.8;

• SGI Onyx 2 (r10000), IRIX64 6.5;

• Apple Xserve G4, Mac OS X 10.2 (Darwin 6.6).

It should work on any other Unix-like system supporting dynamic libraries in ELF format,
provided that the software requirements are fullfilled. There is no Windows support.

2.2 Software requirements

Compiler. PadicoTM is based on PM2 which requires the GNU C compiler. Therefore, only
gcc is supported. It has been successfully tested with gcc 3.2 through 4.4. The versions
priori to 3.1 are not supported anymore.

The default behavior of Padico compilation is to use gcc and g++ command lines to
invoke the C and C++ compilers. To force another command line, set the CC and CXX shell
environment variables before installing Padico or use the interactive installation procedure
as described in Section 2.3.1

Make. Padico requires GNU make 3.81 or later. It may be required to set the environ-
ment variable MAKE to the correct value if the command is not make (e.g. on some systems,
GNU make is gmake), or use the interactive installation procedure.

9

10 CHAPTER 2. INSTALLATION AND CONFIGURATION

Network drivers. The supported high-speed networks are Myrinet, Myrinet-2000,
Quadrics QsNet-II, INFINIBAND and SCI. Myrinet and Myrinet-2000 require MX or GM.
QsNet requires Elan 4. Infiniband requires OpenFabrics or OpenIB verbs (1.0 or later–
1.0-rc are not supported). SCI networks require SISCI. You must provide the path to
MX and SISCI drivers through the variables MX_DIR and SISCI_PATH – the defaults are
MX_DIR=/opt/mx and SISCI_PATH=/usr/local/sisci and can be overridden by set-
ting the environment variable, or interactively as described in Section 2.3.1.

Other. The PadicoTM core uses PM2 and the Expat XML parser. Both are supplied in the
Padico package and are automatically built with PadicoTM. If you get weird errors with
PM2 makefiles and shell scripts, try to upgrade GNU textutils to version 2.0 or later.

Optional. Some Padico parts have specific software requirements but can be deactivated.
Their building is optional. Check below if you plan to use these services.

CORBA service requires python 1.5.2 or later. Previous versions won’t work. You
need the runtime environment and the developers package (including for example the
python.h file).

padico-run is a CORBA remote-control tool used to steer the processes. It requires a
myCORBA-supported ORB. See the details in Section 4 about myCORBA and Sec-
tion 3.1.2 about padico-run and the CORBA gatekeeper.

padico-control is a graphical remote-control tool used to steer the processes. It requires
a Java virtual machine with Swing (Java 1.5 or later).

padico-nsconfig is a graphical configuration tool used to assemble communication com-
ponents. It requires a Java virtual machine with Swing and templates support (Java 1.5
or later).

G5k is a Padico module which captures the Grid5000 Topology. It requires two libraries,
libcurl and libjansson.

Topo-Print is a Padico module which displays the current known topology. It requires
graphviz libraries to display topology in dot format.

Control-SSH2 is a Padico module which establishes control channel and can cross gate-
way with sshd service. It requires libssh2 library.

2.3. INSTALLATION AND CONFIGURATION 11

Summary

Software Padico package Requirement
C compiler PadicoTM Ok: gcc-3.2, gcc-3.3, gcc-3.4, gcc-4.0;

doesn’t work: gcc-2.95, gcc-3.0, gcc-3.1,
non-GNU

C++ compiler CORBA for PadicoTM Ok: g++-3.2, g++-3.3, g++-3.4, g++-4.0;
doesn’t work: g++-2.96, g++-3.0, g++-3.1

Python CORBA for PadicoTM python 1.5.2 or later (runtime and devel-
opers package)

make all GNU make 3.81 or later
Java PadicoControl GUI Sun JDK 1.5 or later; should compile with

jikes; won’t work with non-Sun virtual
machine

ORB PadicoControl command-line MICO 2.3.x, ORBacus 4.0.x,
OmniORB 3.0.x or OmniORB 4.0.x
(see section 4.1)

2.3 Installation and configuration

Files. The Padico packages are contained in a single archive named
PadicoTM-r4762M.tar.gz. Un-gzip and un-tar the archive. You should get a di-
rectory named PadicoTM-r4762M with the following files and directories:
README — a short guide for Padico installation
RELEASE_NOTE — a short note about what is contained in the package
COPYING — the license for Padico
VERSION — Padico version number, namely r4762M
doc/ — this documentation
padico-install — the quick install wizard
Makefile — admin makefile, normally not needed by regular users
admin/ — common parts used by each Padico package
myCORBA/ — the myCORBA package; see Section 4
PadicoTM/ — the PadicoTM package; see Section 3
PadicoControl/ — the PadicoControl package; see Section 3.1.3

This section describes the quick installation method. An assistant guides you through
the installation and configuration steps. This method is recommended for most users. Ad-
vanced users may prefer to be able to configure and install each package separately, or to
have fine control over the installation process. Advanced installation and setup is described
in Chapter B.1. If you encounter an error while installing Padico, please see Section 2.4.

2.3.1 Framework installation

In the Padico source directory PadicoTM-r4762M, first type make config then type
./padico-install and answer the questions. You will be asked:

• for the installation directory. Type the installation directory path where to install
Padico, or simply accept the default path by leaving the answer empty;

12 CHAPTER 2. INSTALLATION AND CONFIGURATION

• if you want the whiptail or text installation. If you have any problems with whiptail,
then choose the text installation;

• for some environment variables needed for setup: C/C++/Java compilers, Myrinet,
BIP and SCI driver location. To accept the default choice (shown in square brackets),
simply type Return;

• for build options. Regular users will want option 1 (“optimize”) which is the default.
Developers may want option 2 (with debug symbols and trace messages);

• for the Padico packages to build. All the packages you want to use must have to be
build. If unsure, accept the default choice.

Then depending on your input, myCORBA, PadicoTM and PadicoControl are automatically
configured, built and installed. The output messages of all commands are stored in log files.

If you encounter a problem, have a look at Section 2.4. The most common problem is an
error in myCORBA setup; in this case, carefully read Section 4.1.

2.3.2 User environment

Before going further, Padico needs some customization in the user’s environment. For C-
style shells (csh, tcsh), add the following line into your .cshrc file:
source <padico_root>/etc/padico-setup.csh
For Bourne shells (sh, bash, ksh), add the following line into your .profile or .bashrc
file:
. <padico_root>/etc/padico-setup.sh
where <padico_root> is the directory where you installed Padico.

Please see the manual of your shell if you are not sure in which file you should add one
of these lines. It must be in an initialization file and cannot be setup by hand in each terminal.
In particular, it should be automatically executed upon non-interactive rsh. Do not forget
to restart your shell before the core and service setup.

2.3.3 Core & services setup

Core flavors. PadicoTM core & services setup consists in creating cores for spe-
cific network- and processors- configurations. To create a new flavor which con-
tains a PadicoTM core and the associated services, the quick and easy way is to use
padico-core-assistant. Advanced core configuration may require custom setup as
described in Section B.2.

Creating a core with the core assistant: padico-core-assistant. Before you start,
don’t forget that you should have sourced <padico_root>/etc/padico-setup.csh. Start
the script padico-core-assistant. You will be asked for core parameters (mono- or
multi-processor, the PM2 flags, the NetSelector and Controllers, network type), a symbolic
name for the core, and whether you want to build optional services such as CORBA and MPI.
Building CORBA and MPI can be very long (up to 30 minutes) so be patient!

2.4. TROUBLESHOOTING 13

Creating a CORBA startup module: padico-corba-startup. When you boot PadicoTM
(see Section 1.2 “Understanding PadicoTM” for our definition of boot), you actually start pro-
cesses with some pre-loaded modules in them. This bundle of modules must at least contain a
core. It should contain a module to remotely steer the processes. As CORBA remote control is
heavily used in PadicoTM, we suggest you build a startup package that contains a PadicoTM
core, an ORB, and some configuration attributes for CORBA (e.g. a reference to the CORBA

NameService). It may be automatically done through the use of padico-corba-startup.
This script builds a startup package suitable for CORBA use and starts a CORBA NameService
if none is detected by myCORBA. For example, if you have built a core called “mono-mx”,
then type:

padico-corba-startup --padico-core mono-mx -iloadCORBA

Ready for the tutorial! The following sections are useful for troubleshooting, for ad-
vanced installation and configuration mechanisms, and custom core and services setup.
Users who have chosen the quick install as recommended (i.e. padico-install,
padico-core-assistant and padico-corba-startup) can skip these sections and go
directly to the PadicoTM tutorial in Chapter 3.

2.4 Troubleshooting

This section describes the solution to the most common problems that may arise when in-
stalling and configuring PadicoTM.

“No ORB detected. Installation stopped.” padico-run requires an myCORBA-supported
ORB. See Section 4.1 for more information on myCORBA setup and requirements.

Error while compiling PadicoTM code. This is a well-known symptom of a non-
supported compiler. See the software requirements section in this document. Check your
gcc version with:

gcc --version

Syntax errors in makefiles. Padico makefiles require GNU make version 3.81 or later
(http://www.gnu.org/software/make/), and GNU textutils version 2.0 or later
(http://www.gnu.org/software/textutils/). Check with:

make --version
should be at least: GNU Make version 3.81
sort --version
should be at least: sort (GNU textutils) 2.0

SISCI not found. If SISCI is not installed in /usr/local/sisci/, you must spec-
ify where it is installed through the use of the environment variable SISCI_PATH
before any other installation step since PadicoTM is statically linked against it. If
it does not work, it may be required to adapt PM2 scripts in PadicoTM-r4762M

14 CHAPTER 2. INSTALLATION AND CONFIGURATION

/PadicoTM/opt/pm2/mad2/config/options/00sisci.sh. SISCI drivers are likely to
have a different (incompatible) source tree.

Python-related error while compiling CORBA. Python version 1.5.2 or later is required
for the CORBA service. You need the runtime environment and the development kit. The
environment variable PYTHONHOME should point to where Python is installed. Unless you
know what you are doing, we advise no to set the PYTHONPATH variable. There is a bug in
the way OmniORB uses Python. It assumes prefix and exec_prefix to be the same, thus
a multi-platform installation will not work.

“xxxxx requires PADICO_CORE” or other message relative to PADICO_CORE. Some
Padico commands are core-specific and thus must know to what core flavor the operation is
related. Either set the PADICO_CORE environment variable to give the default core name, or
give a --padico-core <core> argument to the command. More details in Chapter B.2.

Error while building the “ORB” service on Redhat Linux 7.0 or 7.1. Some Red-
hat distribution come with a non-standard version of the GNU compiler, namely
2.96. This compiler is not able to build PM2 and should not be used. Even if
you specify an alternate (valid) compiler, it is still possible that OmniORB forces
/usr/include in the include path because of Python, thus using wrong include files.
If this would happen, a possible fix (but not recommended) consists in editing the
PadicoTM/opt/omniORB-3.0.2/src/tool/omniidl/cxx/dir.mk file and control
“by hand” the lines dealing with PYPREFIX. A better solution is to upgrade to gcc 3.4 or
later, and to completely get rid of the infamous gcc 2.96.

padico-core-assistant command not found. After the framework installation
(padico-install), you have to customize your environment (see Section 2.3.2). You must
restart your shell or open a new shell for this modification to be taken into account. To check
that everything is ok, you may type:

echo $PADICO_ROOT
should print where Padico is installed

pm2-config not found in PATH – please add $PM2_ROOT/bin in your PATH Either you
are trying to use your existing PM2 installation (and then you should know what you are
doing), or you are re-installing Padico over an existing installation of Padico. In this later
case, delete your old Padico installation, and restart a new installation in a clean shell (i.e.
no PADICO_ROOT nor PM2_ROOT).

Problem not listed here? If the problem you encounter is not listed here, then you can
get help from the Padico users mailing-list. See https://www.irisa.fr/wws/info/
padico-users/ to subscribe to the <padico-users@listes.irisa.fr> mailing-list.
Do not forget to include in your e-mail the exact error message, your hardware description,
your OS name and version, and the Padico version number.

2.5. MIDDLEWARE SERVICES SETUP 15

2.5 Middleware services setup

How to build a middleware service with Padico Padico can support some external mid-
dleware services, in order to provide their services, using the benefits of Padico. These
services cannot be used with a normal compilation. They have to be builded with Padico
compiler and linker.

This services are all listed in $PADICO_ROOT/MiddlewareServices/. This folder con-
tains a directory for each middleware, and some additional scripts designed for the down-
load and the installation of this middlewares.

In order to install a service, you first have to download and unpack it. This can be done
using the command:

./package-admin download

Then you can install the service in a dedicated directory with the command:

./package-admin import

The last step, the compilation of the service, is done from the dedicated-service directory
using the command:

make

Make sure your PADICO_CORE environment variable is set before compiling the service.

The available middleware services Here is a list of the middleware services available with
Padico:

• certi-3.0. CERTI is a runtime infrastructure for distributed discrete event simulations
developed at ONERA. It provides a set of services used by simulators to interoperate
(such as object management, time management, optimization services, etc.)

• juxmem-c-0.2 This software prototype is based on the concept of data sharing service
for grid computing, as a compromise between DSM systems and P2P systems. The
main contribution of this service is to decouple data management from grid compu-
tation, by providing location transparency as well as data persistence in a dynamic
environment.

• mome The MOME database provides a knowledge exchange platform about measure-
ment tools and measurement data.

• mpich-1.2.x MPICH2 is an implementation of the Message-Passing Interface (MPI).
The goals of MPICH2 are to provide an MPI implementation for important platforms,
including clusters, SMPs, and massively parallel processors. It also provides a vehicle
for MPI implementation research and for developing new and better parallel program-
ming environments

• omniORB-4.0 omniORB is a robust high performance CORBA ORB for C++ and
Python.

16 CHAPTER 2. INSTALLATION AND CONFIGURATION

• apr-1.2.1 The mission of the Apache Portable Runtime (APR) project is to create and
maintain software libraries that provide a predictable and consistent interface to un-
derlying platform-specific implementations.

• gSOAP-2.x The gSOAP Web services development toolkit offers an XML to C/C++ lan-
guage binding to ease the development of SOAP/XML Web services in C and C/C++.

• jxta-c-2.3 JXTA technology is a set of open protocols that allow any connected device
on the network ranging from cell phones and wireless PDAs to PCs and servers to
communicate and collaborate in a P2P manner. JXTA peers create a virtual network
where any peer can interact with other peers and resources directly even when some
of the peers and resources are behind firewalls and NATs or are on different network
transports.

• mico-2.3 MICO implements the CORBA standard. It only relies on C++, the standard
Unix API and non-proprietary libraries.

• yampii-0.3 YAMPII is an implementation of the Message-Passing Interface (MPI).

Chapter 3

PadicoTM tutorial

3.1 Getting started: a step by step example

3.1.1 A PadicoTM-flavored “Hello world!”

Let us write step by step a basic “Hello world” example. We create a file named
HelloWorld.c. We want to declare that this file is a Padico module. This is “automati-
cally” done by the following two lines:

#include <Padico/Module.h>
PADICO_MODULE_DECLARE(HelloWorld);

Then we define the actions of the module. A module may declare an “init” func-
tion, a “run” function, and a “finalize” function, called respectively when the module
would be loaded, run, and unloaded. These functions are declared with macros defined
in Padico/Module.h. For example, we declare here that the “run” function for our Hello
world is hello_main:

PADICO_MODULE_RUN(hello_main);

Finally, we implement the hello_main function. It should have a main-like header.

int hello_main(int argc, char**argv)
{

padico_print("Hello world!\n");
return 0;

}

We use the padico_print function which is like the well-known printf function except
that its output is captured by Padico console. This function, like most of the Padico basic
function, is defined in Puk.h, thus we add this line in the headers:

#include <Padico/Puk.h>

We put it altogether on Figure 3.1. You can find the examples of this tutorial in the directory
PadicoTM-r4762M/PadicoTM/Examples/Tutorial/.

Now, let us compile this file. We suppose that we compile the example for a core (strictly
speaking: a PadicoTM core flavor) named mono-mx:

17

18 CHAPTER 3. PADICOTM TUTORIAL

/* Padico tutorial 1: "Hello world"

* available in: PadicoTM/Examples/Tutorial/01-HelloWorld/

* author: Alexandre Denis

*/

#include <Padico/Puk.h>
#include <Padico/Module.h>

PADICO_MODULE_DECLARE(HelloWorld);
PADICO_MODULE_RUN(hello_main);

static int hello_world_count = 0;

int hello_main(int argc, char**argv)
{

printf("Hello world! [%d]\n", hello_world_count);
hello_world_count++;
return 0;

}

Figure 3.1: The whole HelloWorld.c example

setenv PADICO_CORE mono-mx
padico-cc -c HelloWorld.c
padico-mkmod HelloWorld.o -o HelloWorld

The on-screen output should looks like this:

<!-- Padico module description. This file is HelloWorld.xml

Automaticaly generated by padico-mkmod - do not edit!
Built on: Linux paraski 2.2.18 #1 SMP Fri Aug 24 10:12:15 CEST 2001 i686 unknown

-->
<defmod name="HelloWorld" driver="binary">

<unit>libHelloWorld.so</unit>
</defmod>

Don’t worry about this for the moment. It is the XML file which describes the module.

3.1.2 Managing PadicoTM in command-line: padico-boot and padico-run

Boot PadicoTM: padico-boot

The core and the services are now ready for startup. The “HelloWorld” module is built.
Building a core, additional services, and startup module has to be done only once for each
core flavor. Let us assume that we want to boot the startup module mono-mx previously
built in section 2.3.3 on 2 machines called paraski43 and paraski44. We want each ma-
chine to open a new console. The command line is:

padico-boot -c mono-mx paraski43 paraski44

If you have enabled trace at the configure step, then you probably want to turn trace off.
The command line without trace is:

3.1. GETTING STARTED: A STEP BY STEP EXAMPLE 19

padico-boot -c mono-mx paraski43 paraski44 -- --padico-trace-off

All the parameters after the -- are passed to Puk, not to the user’s modules.
If we do not need one console per node, we can type:

padico-boot mono-mx paraski43 paraski44

If we need to specify different init sequences on different nodes, we can type the -i<init>
argument. This add file <init> to startup sequence. <init> must be an absolute file name or
a name without path that will be search for in $PADICO_ROOT/etc/init.d/. This argument
can be given several times:

padico-boot mono-mx-with-CORBA paraski43 -iNetSelector-preset-multi-cluster
-i$PADICO_ROOT/etc/init.d/load-InfinibandVerbs.xml
%$

Be aware that the order of the differernt -i arguments can be important; for example, we
have to load the NetSelector before loading something else that uses networks. Here is an
example of <init> file (load-InfiniBandVerbs.xml):

<?xml version="1.0"?>
<sequence>

<load>InfinibandVerbs</load>
</sequence>

This -i option can be limited to an host, or a list of hosts, by typing:

padico-boot [...] --init:paraski43=<init>
padico-boot [...] --init:paraski43,paraski44=<init>

Many other options can be limited using this method, as shown below:

padico-boot [...] --console:paraski43
padico-boot [...] --console:paraski43=xterm
padico-boot [...] --debug:paraski43
padico-boot [...] --log:paraski43
padico-boot [...] --log:paraski43=/tmp/padico-log/
padico-boot [...] --trace:paraski43
padico-boot [...] --trace:paraski43=/home/user/padico-trace-file.xml

Hint: this “machine” specification is applicable to -D. For instance it’s possible to launch:

padico-boot [...] -DPADICO_LAUNCH:paraski43=/bin/echo

It works with all -D specifications.
** Warning ** : in this exemple, we used paraski43 and paraski44. These machine

names is actually compared to the answer of the machine to the command “hostname”.
Be sure the value returned by the system is the same as yours.

Tip: padico-boot with a job manager. If your cluster is managed by a job manager
(batch), you have to submit padico-boot to the job manager and then get the hosts list
form the job manager. For example, to boot up 4 PadicoTM nodes with LSF, a command line
could look like this:

bsub -I -n 4 padico-boot -c mono-tcp ’$LSB_HOSTS’

20 CHAPTER 3. PADICOTM TUTORIAL

Load, run and unload a module with the CORBA remote-control: padico-run

After PadicoTM has been booted, an user’s module, such as HelloWorld in the previous ex-
ample, can be loaded. In this example, we use padico-run from the PadicoControl pack-
age. The following command line will load HelloWorld on all booted nodes:

padico-run -l HelloWorld

Starting the execution of the user’s module, that have been previously loaded, is per-
formed thanks to the following command line:

padico-run -r HelloWorld

If we want to restart HelloWorld only on paraski43:

padico-run -r HelloWorld paraski43

The module is restarted (i.e. its “run” method is called in a new thread) and remains loaded
in memory.

User’s modules can be unloaded from PadicoTM using the following command line:

padico-run -u HelloWorld

Finally, PadicoTM processes can be killed thanks to the following command line:

padico-run -k

padico-launch

This command is used when we don’t want to modify our program to execute it with the
benefits of PadicoTM. It allows the execution of the program, with PadicoTM as preload.
Then, in order to lauch the “foo” program:

padico-launch foo arg1 arg2 ...

3.1.3 Managing PadicoTM with a GUI: padico-control

The PadicoControl GUI is a user-friendly alternative to the command-line tools. To start the
PadicoControl GUI, type: padico-control. You should get something like Figure 3.2 (but
with all fields empty).

Booting processes: the “Boot” panel — The “Boot” panel (the left part of the
padico-control interface) aims at managing padico-boot commands. Use the upper
part to build a machine list on which to boot PadicoTM processes. The “Proxy Command”
aims at launching a padico-boot command remotely, for example on a cluster front-end
while padico-control is running on your office workstation; leave it blank if you want
padico-boot to be executed on the local machine. The “Core” field is mandatory. It is
the name of the core that will be passed to padico-boot. Puk parameters, other padico-
boot parameters can also be added. The “Rdv Client”, “Rdv Server” and “Contact padico-
control” are used to modify the way padico-boot is connected to the other nodes (see
Section 3.5). You can also choose to launch the different nodes into a GDB process with the

3.1. GETTING STARTED: A STEP BY STEP EXAMPLE 21

Figure 3.2: Panel of padico-control

22 CHAPTER 3. PADICOTM TUTORIAL

“Debugger” box, or ask for traces if your Padico and/or core is built as a debug version (see
Section 5.1.6 for help on traces). You can load and save such configurations with the “Load”
and “Save” entries of the “File” menu. To actually boot, press the “Boot” button. The stan-
dard input/output are captured by the padico-control console. You also have to choose
the NetSelector to use, see Section 3.2 for more details.

Build the list of nodes you want PadicoTM to run on, type mono-mx (or
any suitable core name) in the “Startup Module” field, select the “Console” mode,
and press “Boot”. One console per node should appear; when the message
PadicoTM: ***** Padico Task Manager ready ***** appears in the consoles, the
processes are ready to accept commands.

Execution steering: the “Running nodes” panel — Once the processes are started, they
contact the remote control that started them. When they subscribe for remote control,
padico-control automatically show them into the “Running nodes” panel, the right part
of the padico-control interface (Figure 3.2). There is one sub-panel per running node.
The bottom right text field, next to the “Unload” button aims at sending commands to the
nodes: select the nodes which must receive the command (using the checkboxes on the left,
the “Select all”, “Clear all” and “Invert” buttons), then press the “Kill” button to kill the
processes, or type a module name in the text field and press “Load”, “Run” or “Unload” to
load, run or unload this module on all checked nodes. Input and output for each node is
monitored in text fields; advanced users can directly send XML commands to the nodes.

Type HelloWorld in the bottom-right text field, select the left boxes of the nodes
you want to run the “Hello world” example on, and press “Load”. They should answer
<ok></ok>. This XML messages means that the operation is successfull. Try to press
“Load” again: there should be an error; no harm is done, PadicoTM detects that this module
is already loaded. Try to press “Run”: the nodes’ windows should display “Hello world!”.
Press “Unload” then check all processes and press “Kill”. It terminates the PadicoTM ses-
sion. A final dialog box sums up the result of the padico-boot command; it may help to
diagnose boot errors.

Tip: the return code may seem erroneous if you use a non-empty proxy command. Ac-
tually, it is the return code for the contact command itself, not for the remote padico-boot
command. Typically, ssh forwards the return code from the remote process, whereas rsh
does not report anything about the remote process.

The “Active sessions” panel is not used yet. It is reserved for future use.

3.2 NetSelector

Choosing how to assemble adapters, based on the required interfaces and some set of pref-
erences, can be done easily using the NetSelector module.

3.2.1 NetSelector configuration

It is possible to control, or even to force, the decisions made by the NetSelector. This is done
by providing instructions through an XML file. The NetSelector configuration provides two
modes: the NetSelector-basic which reads an XML file and chooses what is described in this

3.2. NETSELECTOR 23

file, and the NetSelector-besteffort which tries to resolve the requests the best possible way,
and does not need an XML file.

3.2.2 NetSelector and padico-boot

You can select the type of NetSelector you want to run by adding an argument to
padico-boot. The differents modes are the following:

• Multi-cluster (default) : -iNetSelector-preset-multi-cluster This option is
chosen when you want to use Madeleine and inter-cluster capabilities for this set of
nodes. As it only uses NetSelector-inet-default and NetSelector-Besteffort, it does not
need a configuration file. The module Control-Router is loaded, in order to route the
inter-cluster communications.

• Grid : -iNetSelector-preset-grid The grid option provides full-routing op-
tions. Madeleine is enabled. It uses the NetSelector-basic prior to NetSelector-inet-
default and NetSelector-besteffort. A XML configuration file for the NetSelector can be
provided.

• Single-cluster : -iNetSelector-preset-single-cluster This option is chosen
when you do not want any routing options, only Madeleine can be used here. As it
only uses NetSelector-inet-default and NetSelector-Besteffort, it does not need a con-
figuration file.

• Router (single node) : -iNetSelector-preset-router This option is useful when
you want to create a full routing capable node, which is not in a set of Madeleine nodes.
A XML configuration file can be provided.

To specify a XML NetSelector file, use the -DPADICO_NSCONFIG=”path” argument.

NetSelector-basic

The NetSelector-basic uses an XML file to choose how to communicate on the networks. This
configuration file describes all the rules that can be used to perform communication, depend-
ing on the topology, and so on... This file can be written through the padico-nsconfig
interface, but we’ll describe the structure of this file just below: The document contains 3
parts: first is the description of the topology, second is the description of the adapters that
we want to use, and the third part is the description of what adapter we have to use in a
particular situation.

<?xml version="1.0"?>
<!DOCTYPE NS:rule-set SYSTEM ".../<arch>/etc/NetSelector.dtd">
<NS:rule-set xmlns:NS="http://padico.org/PadicoTM/NetSelector">

<NS:group id="GROUP_ID">
<NS:TYPE ID="ID_MACHINES"/>

</NS:group>
[other groups definitions...]
<NS:assembly id="ASSEMBLY_ID">

<NS:adapter id="ADAPTER_ID" name="ADAPTER_NAME"/>

24 CHAPTER 3. PADICOTM TUTORIAL

<NS:adapter id="ADAPTER_ID_2" name="ADAPTER_NAME_2">
<NS:uses adapter-id="ADAPTER_ID" iface="IFACE_USED"/>

</NS:adapter>
<NS:assembly-provides adapter-id="ADAPTER_ID_2" iface="IFACE_PROVIDED"/>

</NS:assembly>
[other assemblies definitions...]
<NS:rule>

<NS:assembly ref="ASSEMBLY_ID"/>
<NS:target kind="TYPE" profile="PROFILE">

<NS:group ref="GROUP_ID"/>
</NS:target>

</NS:rule>
[other rules...]

</NS:rule-set>

First we find the topology definitions. This describes some groups that can be used
later in the rule definition. Here we describe a set of machines that will be named
GROUP_ID. We can describe them through some different ways: TYPE can be node or host.
ID_MACHINES is a description of the nodes/hosts contained in the group, as machines
names. After defining all the groups that we need, we describes the assemblies (adapters)
that we want to use. Each assembly has an ASSEMBLY_ID, which can be used for rules def-
initions, and is composed of many adapters. Each adapter is designed by his name and an
ADAPTER_ID, using a “<NS:adapter [...]>” line. Some adapters needs to be connected to an-
other (because they use an interface to provides its service) and that has to be described: then
we have to use “<NS:uses [...]>” line. This need the ADAPTER_ID of the connected adapter
and the interface (IFACE_USED) that connects both adapters. Third type of assembly de-
scription, the “<NS:assembly-provides [...]>” line let the NetSelector know what interface is
provided by this assembly. Last, we have to describe the usage of the assemblies. That’s
a rule definition. It contains an assembly (referred by its ADAPTER_ID) and some target
definitions. A target is defined by a type (clique, multi-partite, or arrow), a profile, and some
nodes/hosts. Here we can use the topology definitions.

Here is a real example:

<?xml version="1.0"?>
<!DOCTYPE NS:rule-set SYSTEM ".../<arch>/etc/NetSelector.dtd">
<NS:rule-set xmlns:NS="http://padico.org/PadicoTM/NetSelector">

<NS:group id="paravent-IB">
<NS:host name="paravent[0-6]*.rennes.grid5000.fr"/>

</NS:group>
<NS:group id="paravent">

<NS:group ref="paravent-IB"/>
<NS:host name="paravent*.irisa.fr"/>

</NS:group>
<NS:assembly id="s-0">

<NS:adapter id="0" name="InfinibandVerbs"/>
<NS:assembly-provides adapter-id="0" iface="PadicoSimplePackets"/>

</NS:assembly>
<NS:rule>

3.2. NETSELECTOR 25

<NS:assembly ref="s-0"/>
<NS:target kind="clique" profile="default">

<NS:group ref="paravent-IB"/>
</NS:target>

</NS:rule>
</NS:rule-set>

This XML document contains several elements or definitions.
The first type of definition is a group definition: it defines a group named

paravent-IB containing a set of hosts whose names are defined by the expression
paravent[0-6]*.rennes.grid5000.fr. A second group is defined, paravent, contain-
ing the first group, and a set of hosts also defined through an expression. These groups can
then be used in the following definitions.

The second type of definition is an assembly definition: it defines the assembly s-0 using
the adapter named Infiniband, and providing the interface PadicoSimplePackets.

The third type of definition is a rule definition: it defines a link between an assembly
and a target. A target is defined through a type and a profile. Several types are available:
“clique”, “multi-partite”, or “arrow” (only one-way link, like ssh). The “default” profile is
used (see below). The profile used is “default” for this rule (see below).

NetSelector-besteffort

The second type of NetSelector is the NetSelector-besteffort. This one doesn’t need a XML
configuration file. The goal of this NetSelector is to provide answer for all possible commu-
nications. It has a large set of rules that he can use to provide communications. It chooses
automatically an assembly that enables the communication that the module is asking for,
depending on the topology and possibilities. It can be used as a “default” set of rules.

Profiles

Many applications need to provide different communication channels for the same set of
nodes. For example, these nodes might need to exchange data, important messages (con-
trol), . . . In order to select different methods of communication, different profiles can be used.

The main profiles in Padico are:

• control: is useful in order to build Padico control links.

• default: is the default choice when we talk to a standard Padico node.

• inet: use a common socket connection. This is in order to respect interoperability with
others applications.

padico-nsconfig

The NetSelector XML configuration files can easily be created and modified using the Padico
application padico-nsconfig.

A snapshot is shown on Figure 3.3. The first bottom panel shows the groups. Here a
group “daltons” is created. To create a new group, click on the “New” button at the left
bottom of the panel. A new panel as shown on Figure 3.4 will appear. You need to provide

26 CHAPTER 3. PADICOTM TUTORIAL

Figure 3.3: “Topology” panel of padico-nsconfig

the name of the new group, the other groups and others hosts that it contains, and click
“OK” to confirm the creation of the group.

When all your groups are defined, switch to the “Assembly” panel, shown on Figure 3.5.
To create a new assembly, click on the “New” button. You need to provide in a new panel the
list of interfaces provided by this new assembly, and click on “OK” to confirm. The chosed
interfaces will appear in the graph in the middle of the “Assembly” panel. To complete
the creation of the assembly, you can add adapters by first selecting them in the Assembly
Builder box and then clicking on the “Add” button. Choosing and finding adapters can be
done by applying filters on their interfaces. The chosen adapter is shown at the right bottom
of the panel. After adding all the needed adapters, you need to connect their interfaces using
the appropriate “Current Tool” in the list at the right top corner of the panel.

After defining the assemblies and the groups, you need to bind them by defining some
rules. To do so, choose an assembly, click on “New” in the “Targets” panel, add some groups,
choose a profile and a type of link.

Once you are done with all these steps, save your new NetSelector configuration into a
file. The created XML file can then be given to the NetSelector configuration module.

3.2.3 NetSelector and padico-control

The choice of the NetSelector can also be done using the padico-control interface. You
can choose between different combinations of the allowed NetSelectors. The choices are the
same as presented just above, plus a None (in-core) choice, that supposes that the NetSelector

3.2. NETSELECTOR 27

Figure 3.4: Group creation in padico-nsconfig

Figure 3.5: “Assembly” panel of padico-nsconfig

28 CHAPTER 3. PADICOTM TUTORIAL

was given at core-making time. This functionnality will be deleted in the near future. A
text box allows to give the name of the XML file in the case where the NetSelector-basic is
used.“Find” and “Edit” buttons allow to find an XML NetSelector file and to edit the selected
file by hand (using emacs).

3.3 MPI with PadicoTM

3.3.1 Example

This section is not a MPI programming guide. It only gives the differences between MPI

programming in Padico and “regular” MPI programming.

HelloMPI. Let us consider a “Hello world” written with MPI. The source code for an
MPI code with PadicoTM is exactly the same than with any other MPI implementation.
The C include file is <mpi.h>. The example for this tutorial is in PadicoTM-r4762M
/PadicoTM/Examples/Tutorial/02-HelloMPI/.

Compiling You should have compiled the MPI middleware service (as mpich 1.2.X). See
Section 2.5 on how to build external middlewares services. For our HelloMPI example, we
first declare what core to use (mono-mx in our example):

setenv PADICO_CORE mono-mx

Then we compile HelloMPI.c:

padico-mpicc -c HelloMPI.c

Then, we link:

padico-mpicc HelloMPI.o -o HelloMPI

Compiling and linking in one pass is not supported. The link operation does not build a
HelloMPI binary file. Instead, it creates a Padico module called HelloMPI. If you do not
want to use an environment variable, you can specify the core for each operation:

padico-mpicc --padico-core mono-mx -c HelloMPI.c
padico-mpicc --padico-core mono-mx HelloMPI.o -o HelloMPI

Running HelloMPI. As with any Padico application, we first boot Padico with a
padico-boot command (see the example in Section 3.1.2) or with padico-control.
MPI uses the CORBA gatekeeper, so it is required to use a startup module which includes
CORBA-Gatekeeper. Our example mono-mx startup module fullfills this condition.

Instead of mpirun, you will run your application with padico-mpirun. It accepts the
usual “-np” and -machinefile flags. We added the non-standard -nodelist flag to ex-
plicitly give a list of nodes on the command line. Once Padico has booted, we run HelloMPI
on all available nodes with the following command line:

padico-mpirun HelloMPI

You can also use GUI for padico-mpirun. Open the “MPI run...” panel in the “Tools”
menu, enter the module that you want to launch, the MPI module you want to use and press
“MPIRun”.

3.4. CORBA WITH PADICOTM 29

interface Hello_server
{
void Hello();

};

Figure 3.6: The Hello.idl interface declaration

Summary for MPI in PadicoTM. MPI in PadicoTM works like any other MPI implemen-
tation except that it uses padico-mpicc instead of mpicc, and padico-mpirun instead
of mpirun. It is possible to make links so that the command names are mpicc and mpirun,
but it may conflict with an already installed MPI implementation on your system. The only
peculiarity is that you must not forget to boot PadicoTM before running padico-mpirun,
or use the padico-control MPI panel.

3.4 CORBA with PadicoTM

3.4.1 Example

We will write a “Hello world!” client-server application. In this section, we
suppose you are familiar with the CORBA architecture and the “Hello world”
PadicoTM example described in Section 3.1.1. Let us consider the IDL declaration
shown on Figure 3.6. The source code for this example is in PadicoTM-r4762M
/PadicoTM/Examples/Tutorial/03-HelloCORBA/.

First, we choose the CORBA implementation that myCORBA will use:

setenv MYCORBA omniORB-3.0.2

Then, we invoke the IDL compiler through myCORBA with the following command line:

mycorba-idl Hello.idl

It generates two files: Hello.cc and Hello.h. Compile Hello.c with the following com-
mand line:

mycorba-c++ Hello.cc

The source code for a Padico CORBA server is very similar to a regular CORBA code. It is
given on Appendix C.2.

Notice the differences:

• the header file for CORBA is Padico/CORBA.h, the CORBA naming service is
Padico/COSNaming.h;

• the type of the ORB is Padico::ORB_ptr instead of CORBA::ORB_ptr;

• ORB initialization is done through the function Padico::ORB_init() instead of
CORBA::ORB_init(argc, argv, orbname).

• orb->run() and orb->shutdown() are not needed, though they are allowed.

We build the server with the following command lines:

30 CHAPTER 3. PADICOTM TUTORIAL

mycorba-c++ Hello-server.cc
padico-mkmod Hello.o Hello-server.o -o Hello-server \

--padico-core <your core name>

The client-side code source follows exactly the same rules concerning headers files, ORB

variable type and ORB initialization. It is given on Appendix C.1.
Build the client with the following command lines:

mycorba-c++ Hello-client.cc
padico-mkmod Hello.o Hello-client.o -o Hello-client \

--padico-core <your core name>

3.4.2 More about CORBA in PadicoTM

Files and services

Padico permits the use of any ORB implementation. The ORB are available through the use
of the appropriate middleware service. Look at Section 2.5 to see how to compile it. A user
code that uses CORBA must include Padico/CORBA.h. No other CORBA.hmay be included
within a Padico module.

The CORBA naming service can be accessed with the include file
Padico/COSNaming.h. Padico CORBA does not provide other CORBA services. However,
services from other CORBA implementations (MICO for example) should work with Padico
CORBA.

PadicoTM CORBA in the source code

The ORB should be stored into a variable with type Padico::ORB_ptr, initialized with
Padico::ORB_init(). Do not use CORBA::ORB_ptr. Padico::ORB_ptr provides a
CORBA-like interface. It defines almost all the standard ORB methods. Keep in mind that,
though it looks like a regular CORBA ORB, it is not a real ORB. It is only an interface that
provides access to a shared ORB. The real ORB is owned, initialized, and run by Padico. It
runs in a background thread managed by Padico. It is able to serve several modules at the
same time; each module has its own Padico::ORB_ptr variable.

For compatibility with regular CORBA programs, methods such as run(),
perform_work() and shutdown() are defined and may be called but do nothing
in Padico::ORB_ptr. Advanced features such as typecode-related functions are not
defined in the Padico ORB. If you really need them, you can get the actual ORB in
Padico::the_orb. Do not touch Padico::the_orb unless you really know what you
are doing. In particular, it is strictly forbidden to call run() or shutdown() on this object.

This limitation should be removed in a future version of PadicoTM.

Build

Compile the IDL files with mycorba-idl. There is an optional flag --any for gener-
ating code to handle the CORBA type Any. Compile the .cc files with mycorba-c++
which behaves like any C++ compiler. See the section 4.3 for more details on myCORBA.
mycorba-c++ is only a compiler; it is not a linker. Then link as usually with padico-mkmod.

3.5. PADICO-CONTROL AND FIREWALLS 31

A module that uses CORBA must be compiled with the same C++ compiler than the
PadicoTM service “ORB” itself. Using another compiler would most probably prevent the
file from being linked properly since C++ mangled names vary from one compiler to another.

Execute

In order to load all we need to execute CORBA applications, we know have to use the -
iloadCORBA option for padico-boot.

3.5 Padico-control and Firewalls

In some specific cases, you might want to run the padico-control panel on a computer
which is away from the “compute” nodes. For example, you might want to use nodes from
a cluster, and to have your padico-control panel on your local machine. It is then very
likely to have a firewall between the cluster and your local machine. We will see how now
to deal with these cases.

3.5.1 A first example

Let’s take the most common example: you want to run the padico-control panel on your
local machine. You are behind a firewall. You also want to run the nodes on the machines of
a cluster, which is also protected by a firewall.

If you choose the option “all” in the “Contact padico control” box of the
padico-control panel, then all the compute nodes will try to connect to the control node
running on your local machine. That will probably fail because of the firewall. You could
allow these connections to go through by changing the rules of your firewall, but this is not
a good (and feasible) solution, you should instead use the routing capabilities of Padico.

As shown on Figure 3.7, launch the padico-control on your local machine. Then
you need to start the routing node node0. This is done by choosing the option “one” or
“all” in the “Contact padico control” box, precise that the node will be a “Rdv Server” and
give the entry routing port in the appropriate field. This node will then contact the machine
that runs padico-control through a SSH tunnel (you need to use a NetSelector XML file
as below). This is the only connection which needs to go through the firewall in order to
connect all the nodes. In the NetSelector XML file given just below; the s-1 assembly forces
the SSH-tunneling.

<?xml version="1.0"?>
<!DOCTYPE NS:rule-set SYSTEM ".../<arch>/etc/NetSelector.dtd">
<NS:rule-set xmlns:NS="http://padico.org/PadicoTM/NetSelector">

<NS:group id="paravent-IB">
<NS:host name="paravent[0-6]*.rennes.grid5000.fr"/>

</NS:group>
<NS:group id="paravent">

<NS:group ref="paravent-IB"/>
<NS:host name="paravent*.irisa.fr"/>

</NS:group>

32 CHAPTER 3. PADICOTM TUTORIAL

<NS:group id="portable">
<NS:host addr="0.0.0.0"/>

</NS:group>

<NS:assembly id="s-0">
<NS:adapter id="0" name="InfinibandVerbs"/>
<NS:assembly-provides adapter-id="0" iface="PadicoSimplePackets"/>

</NS:assembly>
<NS:rule>

<NS:assembly ref="s-0"/>
<NS:target kind="clique" profile="default">

<NS:group ref="paravent-IB"/>
</NS:target>

</NS:rule>

<NS:assembly id="s-1">
<NS:adapter id="0" name="SocketFactory-SSH-Tunnel">
<NS:attr label="ssh_host">cocalight.labri.fr</NS:attr>
<NS:attr label="ssh_port">21436</NS:attr>

</NS:adapter>
<NS:assembly-provides adapter-id="0" iface="SocketFactory"/>

</NS:assembly>
<NS:rule>

<NS:assembly ref="s-1"/>
<NS:target kind="arrow" profile="inet">

<NS:group ref="paravent"/>
<NS:group ref="portable"/>

</NS:target>
</NS:rule>

</NS:rule-set>

You can launch the other nodes by choosing the option “none” in the “Contact padico-
control” box, and entering the routing host and port after precising that the nodes will be
clients. All these nodes will contact the padico-control through the routing node.

Note: You can also start all the nodes together without precising the server, by choosing
the “one” mode for all the nodes. The 0-node will be the routing node.

3.5.2 Multi-site example

The example on Figure 3.8 shows how we can connect several sites with only one connection
between the machine running padico-control and the “outside world” defined by the
machines from the other side of the “local” firewall.

The principle is to start a node that will be the routing node like in the first example. The
nodes on the same cluster are “Rdv Clients” of this node. But when we want to start some
nodes on another cluster, and do not want to allow connections between this cluster and the

3.5. PADICO-CONTROL AND FIREWALLS 33

S
S

H
D

control

node1 node2

node0

node3

padico

site firewall

local machine firewall GUI

compute and

routing node

compute nodes

Figure 3.7: Simple connection through a firewall

34 CHAPTER 3. PADICOTM TUTORIAL

node02

node01

node03

node0

S
S

H
D

S
S

H
D

control

padico

node11

node12

node13

node1

local machine firewall GUI

site 0 firewall

site 1 firewall

Figure 3.8: Multi-site example

local machine, the routing node (here “node0”) can also route the connections. But in this
case, we also want to limit the number of connections between “site1” and “site0”. Then
there will be another routing node (here “node1”). This node must be started as a client (it
will connect to the “node0” for routing its messages) but also as a server, in order to route the
others nodes from the “site2” machines. The “Contact padico-control” choice is here “none”
as no node will connect directly to padico-control. The other nodes of the cluster must
be started as “Rdv Client” of the “node1” routing node.

3.6 Topology manipulation

To choose best assembly the NetSelector-besteffort must know the topology between two
nodes. A node can automatically discover the neighborhood topology, but it can’t guess
network topology beyond a firewall for example. In this case we must export and import
topology between nodes. In PadicoTM we have a padico service called “Topo-print” which
can print and export topology in PadicoTM native format.

3.6.1 Export and import topology example

In this section we explain how to transfert topology between 2 nodes. We want export topol-
ogy from node A to the node B. On the node A we use the Topo-Print module to export
the topology in PadicoTM format in a file called mytopo.xml:

padico-launch Topo-Print padico mytopo.xml

Then on the other side, on the node B we use the “-i” padico-launch option to load the
file mytopo.xml which contains the topology previously saved:

padico-launch -i<path_to_file_mytopo.xml> ...

3.6. TOPOLOGY MANIPULATION 35

jack1

10.0.0.8 10.0.1.8 10.0.2.8 10.0.100.8

inet-[10.0.0.0/24]

inet

blocked input: tcp

blocked input: udp

joe0

10.0.0.13 10.0.1.13

joe1

10.0.0.14 10.0.1.14

jack0

10.0.0.7 10.0.1.7 10.0.3.7 10.0.200.7 10.0.100.7

inet-[10.0.1.0/24]

inet-[10.0.0.0/8]

Infiniband-[FE80:0000:0000:0001]

Infiniband-[FE80:0000:0000:0002]

Figure 3.9: example of graphic form topology

3.6.2 Draw topology

Sometimes NetSelector-besteffort do not find a path between two nodes, and the result is
it can’t compute a correct assembly. In this case, it is pleasant to show the topology in a
graphic form for debbuging and watch if a path exist between two nodes. If Topo-Print was
compiled with graphviz libraries, it is possible to export topology in a dot format.

padico-launch -i<path_to_file_mytopo.xml> Topo-Print dot mytopo.dot

This command transform the topology of the previous example in a graphviz dot language.
Then this file can be use by graphviz’s tools to generate the graph in a graphic form. The
example on Figure 3.9 show a topology graph generated with graphiz’s tools.

36 CHAPTER 3. PADICOTM TUTORIAL

Chapter 4

myCORBA reference manual

myCORBA is a set of wrappers designed to hide the differences between ORB-vendors.
Thanks to myCORBA, the source code and the makefiles do not see different ORB vendors,
they see myCORBA instead. For now, myCORBA is C++ only.

4.1 Setting up myCORBA: mycorba-admin

When you install Padico, myCORBA is automatically installed. You must then declare to
myCORBA what ORB are installed on your system. The setup command for myCORBA is
mycorba-admin.

Supported ORB Currently, supported CORBA implementations are: MICO, OmniORB 3,
OmniORB 4, ORBacus 4 and PadicoTM-enabled OmniORB.

ORB name ORB identifier string Name Service auto-detection
MICO 2.3.x (tested with 2.3.7) MICO yes MICODIR
Iona ORBacus 4.0.x (tested
with 4.0.5)

ORBACUS4 yes OB_ROOT

OmniORB 3.0.x (tested with
3.0.2)

OMNIORB3 yes OMNIORB3_DIR and
OMNIORB3_PLATFORM

OmniORB 4.0.x (tested with
4.0.0)

OMNIORB4 yes OMNIORB4_TOP

TAO— not supported yet TAO – –
PadicoTM-enabled
OmniORB 3 (3.0.2 pro-
vided in the PadicoTM
distribution)

PADICO_OMNIORB3 no automatically declared by
PadicoTM

PadicoTM-enabled
OmniORB 4

PADICO_OMNIORB4 no automatically declared by
PadicoTM

PadicoTM-enabled MICO,
MICOMT, MICOCCM or
MICO-GUP — experimental
— not supported yet

PADICO_MICO no –

37

38 CHAPTER 4. MYCORBA REFERENCE MANUAL

myCORBA ORB identifier string In order to use an ORB with myCORBA, you should set an
environment variable with the appropriate ORB identifier. For example to set OmniORB 3
as your default ORB in myCORBA :

setenv MYCORBA omniORB-3.0.2

Additionally, every myCORBA command accept the --mycorba= option to override the
default choice.

Scanning ORB. DEPRECATED — myCORBA cannot scan for ORBs!
myCORBA can automatically detect what ORB are installed. Type the following command:

ugo-orb --scan

Auto-detection relies on environment variables to detect what ORB are installed. For
MICO, the variable MICODIR must be set; it is done if MICO is correctly installed and
mico-setup.csh is sourced. For OmniORB 3, the variable OMNIORB3_DIR should point
to the root of the OmniORB installation. For ORBacus 4, the variable OB_ROOT should point
to the root of the ORBacus installation. The PadicoTM-enabled OmniORB is automatically
installed by PadicoTM.

List known ORB. To display what ORB are recognized by myCORBA on your system, type:

mycorba-admin --list

Adding an ORB. To add a specific ORB, you can use the --add flag. The general syntax is:

mycorba-admin --add <orb_file> <orb_installation_path>

For example:

mycorba-admin --add omniORB-4.0.x $HOME/omniORB-4.0.3

This example declares omniORB 4.0.3 to myCORBA, based on the omniORB-4.0.x template
file and omniORB being installed in $HOME/omniORB-4.0.3.

4.2 Managing a CORBA name server with myCORBA: mycorba-ns

If an ORB implements a CORBA NameService, then myCORBA can start and stop the server,
and get the reference of the running server, in a portable fashion. The PadicoTM-enabled
CORBA implementations do not provide a name server implementation.

Start a name server.

mycorba-ns --start

Stop the name server.

mycorba-ns --stop

4.3. MYCORBA IN YOUR MAKEFILES 39

Declare a name server. You can declare to myCORBA an already running name server in
order to use your own name server. Example:

mycorba-ns --register corbaname::paraski.irisa.fr:10000

Get the name server status.

mycorba-ns --status

Get the name server reference.

mycorba-ns --getref

This feature is very useful in wrapper scripts for CORBA clients. You will usually add the
following flag on the command line:

-ORBInitRef NameService=‘mycorba-ns --getref‘

Additionally, myCORBA provides for a generic wrapper which automatically adds an
-ORBInitRef argument pointing to the currently registered name server. For example,
to run nsadmin with the currently registered name server, type:

mycorba-ns --wrap nsadmin

4.3 myCORBA in your makefiles

The usual way is to use mycorba-idl as an IDL compiler, and mycorba-c++ as a C++
compiler. mycorba-idl and mycorba-c++ should be enough for average users.

Build for advanced users. Advanced users may not want to use mycorba-idl or
mycorba-c++. These users may be interested in $PADICO_ROOT/include/myCORBA.sh
and $PADICO_ROOT/include/myCORBA.mkwhich can be sourced respectively in sh shell
and GNU Makefiles. The names are (hopefully!) self-explanatory. myCORBA.sh and
myCORBA.mk are installation dependent. It is unsafe to copy/paste their content. You
should rather source them, then use the variables defined. For the advanced way of using
myCORBA in the makefiles, see the makefile of the CORBA example in PadicoTM.

40 CHAPTER 4. MYCORBA REFERENCE MANUAL

Chapter 5

PadicoTM reference

5.1 PadicoTM Module Specification

5.1.1 Module description

In PadicoTM, all modules are described in a XML dialect, called XML Padico Module Descrip-
tion or XPMD. Its specification is presented in Figure 5.2 and a simple example is listed in
Figure 5.1. A module is a static object. A node can at most load one instance of a module.
A module definition contains a name, a driver name and a list of units. It may also contain
some attributes. Here is a description of theses objects:

Module name The name of the module is a string which identifies the module on disk and
in memory. It must be unique.

Driver Each module is associated to a driver. The driver is responsible for loading, starting
and unloading the units of the module.

Dependency A module may require some others modules. The required modules will be
automatically loaded if necessary.

Unit Components of modules are called “units”. The type of the units is determined by the
driver, so all units of a module are of the same type. For example, units may be binary
libraries, Java classes, other modules. There must be at least one unit in a module.

Attribute Attributes are static values used for configuring modules. Attributes are com-
posed of a label and a value. Labels and values are strings.

File Additional files that compose the module but are not explicitly loaded are referenced.

All the units of a module must have the same type: they are all managed by the same
module driver. The module driver specifies how the units of the module have to be loaded,
unloaded and started. Section 5.1.2 explains the driver execution model in depth.

41

42 CHAPTER 5. PADICOTM REFERENCE

<defmod name="Madico" driver="binary">
<attr label="ENABLE_OPTIMIZE">no</attr>
<attr label="ENABLE_DEBUG"></attr>
<requires>Circuit</requires>
<unit>Madico.so</unit>
</defmod>

Figure 5.1: The XPMD of the Madico service. The name is “Madico”. The driver is “binary”,
which means that units are shared objects. As the service is based on the circuit module API,
it requires the Circuit module. The Madico service needs to know if the core is in debug
or optimized mode; this is done through an attribute. The module contains one unit, namely
the binary library for the module. A module can also include some other files which are not
explicitely loaded, but are considered as a part of the module; it is useful to store these files
if we want to move the module accross systems.

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:annotation>
<xsd:documentation xml:lang="en">
Padico Module Description V1.0
Based on a maybe too recent version of XMLSchema.
</xsd:documentation>
</xsd:annotation>

<xsd:element name="mod" type="modType"/>

<xsd:complexType name="modType">
<xsd:attribute name="name" type="xsd:string" use="required"/>
<xsd:attribute name="driver" type="xsd:string" use="required"/>
<xsd:sequence>
<xsd:element name="requires" type="xsd:string" minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="attr" type="attrType" minOccurs="0"

maxOccurs="unbounded" />
<xsd:element name="unit" type="xsd:string" minOccurs="1"

maxOccurs="unbounded" />
<xsd:element name="file" type="xsd:string" minOccurs="0"

maxOccurs="unbounded" />
</xsd:sequence>
</xsd:complexType>

<xsd:complexType name="attrType">
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="label" type="xsd:string" use="required"/>

</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>

</schema>

Figure 5.2: XML Padico Module Description specifications in XML Schema.

5.1. PADICOTM MODULE SPECIFICATION 43

5.1.2 PadicoTM Execution Model

Module. The basic operations allowed on modules are: open, load, start, unload. These op-
erations are provided by Puk, which parses the XPMD files, resolves any dependencies, and
delegates units operations to drivers. Open a module is the action of opening the XML file,
parsing it, and storing its description in memory; nothing is read from disk except the XML
file; units are not loaded. Load a module is the action of resolving module dependencies,
loading and initializing the module units. This operation is performed on each embedded
unit. Start a module is the action of starting a new execution thread. The start operation
is not supposed to block. A module may be started several times, in sequence or even in
parallel. Unload is the operation of finalizing the module execution, i.e. stop the threads, free
memory, close files, and then unloading the module from memory.

Units. To perform operation on modules, Puk delegates operation on the units to drivers.
Every driver has to support three basic operations on units: load, unload and start. When a
module contains several units, the operations are always performed one unit after the other
in the order of appearance in the module definition.

5.1.3 Available drivers

This section presents the drivers currently available in Padico. Figure 5.3 sums up available
standard drivers.

Driver name Implemented
by module...

Units type

binary PadicoTM Shared object libraries (binary code)
pkg Puk Modules
multi NetAccess Modules to deploy on a group of nodes in an SPMD way
java/class Kaffe Java classes
bin/sh Sh-driver /bin/sh scripts
boot Puk An expanded “binary” module used to manage a node. Users are

not supposed to create such modules

Figure 5.3: List of standard drivers.

44 CHAPTER 5. PADICOTM REFERENCE

Driver Description

binary Implemented by: PadicoTM

The units are shared object file. All three operations are supported, all of them are
optional.

Load When the module is loaded, the function int
padico_module_init(void) is called if it exists for each unit of
the module. This function must not block. It must return 0 upon
initialization success, any non-zero value in the case of failure.

Unload When the module is being unloaded, the function void
padico_module_finalize(void) is called if it exists for each
unit of the module. This function must not block. It must stop any activity
started by calls to start.

Start When a module is started the function int padico_module_run(int
argc, char**argv); is called if it exists for each unit of the module. If
it does not exist, the function void main(int, char**); is looked up
instead. The argc and argv parameters are supplied by the user at run-
time and given directly to the user code. argc is the size of argv; argv[0]
is the module name, and argv[argc]==NULL. The driver creates a new
thread for the execution, thus the function may block.

Note: all the prototypes are in C. In C++, do not forget the extern
"C". Usually, the user does not declare explicitly these func-
tions, but uses PADICO_MODULE_INIT, PADICO_MODULE_RUN and
PADICO_MODULE_FINALIZE instead.

pkg Implemented by: Puk

The units are modules. The three operations are supported, all of them are op-
tional. Each operation is applied sequentially to all the units of the module. These
modules may be used for grouping several modules in one, or to add an attribute
to another module. At most one included module should implement the “Start”
operation; if more than one module implements a “Start”, the behavior is not
specified.

multi Implemented by: NetAccess

Attribute: GroupID (mandatory).

The units are modules. This driver is very similar to the pkg driver except that the
units are managed at a group of nodes level. The group is designed by the GroupID
attribute (required). The attribute is searched in the environment of the module.
If the search fails in this environment, the search goes on in the father module
and so on until the root is reached. It is an error not to provide such an attribute.
There is SPMD synchronization between the execution of the load, unload and
start operations on the units.

continued on next page

5.1. PADICOTM MODULE SPECIFICATION 45

Driver Description

bin/sh Implemented by: Sh-driver

Attribute: Dir (mandatory), Sync (optional, default=”Yes”).

The units are /bin/sh scripts. Supported operation: Start. The Dir attribute
specify the current directory when the script will be started. The Sync attribute
can be “Yes” or “No”; in the case of “Yes”, the parent process is notified upon
script completion; in the case of “No”, the script runs asynchronously without
completion notification.
Note: unlike other module types, scripts are started in their own process.

java/class Implemented by: Kaffe

Attribute: Code (optional), Stdmain (optional, depends on Code).

The units are Java classes. The three operations (load, unload and start) are rec-
ognized. All of them are optional and only apply to the Java class defined by the
Code attribute. If this attribute is not set, none of this operation can occur.

Load When the module is loaded, the method of prototype public static
void padico_module_init(JModule mod) of the class specified by
the Code attribute is called if it exists. This method is called after static
initializers. It must not block.

Unload When the module is being unloaded, the method of prototype public
static void padico_module_finalize(JModule mod) of the
class specified by the Code attribute is called if it exists. This method must
not block.

Start When a module is started and the StdMain attribute is
not set, the method of prototype public static void
padico_module_run(String[]) of the class specified by the Code
attribute is called whether is exists. If the attribute StdMain is set, the
function of prototype public static void main(String[]) of the
class specified by the Code attribute is called whether is exists. As a thread
is created for this execution, the padico_module_run and the main
method are allowed to block.

Note: Java support is not included in the standard PadicoTM-r4762Mrelease. It is
supplied as an experimental add-on.

5.1.4 Execution environment

Each PadicoTM module is associated with a run-time environment. This environment is a
tuple-space composed of labels associated to values. Labels and values are case-sensitive
strings.

The C mapping of the basic operations are:

46 CHAPTER 5. PADICOTM REFERENCE

Function name Description

char* padico_getattr(char* label); Return the value associated with the vari-
able of name described by label. The
variable is first searched for in the module
environment, and, if the search fails, the
variable is search recursively in the parent
module environment.

Return NULL if the variable does not exist
or is the null string.

char*padico_getlocalattr(char* label); Return the value associated with the vari-
able of name described by label. The
variable is only searched in the module en-
vironment.

Return NULL if the variable does not exist
or is the null string.

void padico_setattr(char* label, Insert the variable designed by label and
char* value); of content value in the environment of

the module. Any previous value of the
variable is overwritten.

There is a Java mapping available. These methods belongs to the JModule class.
An instance of such a class is pass to padico_module_init(JModule mod) and to
padico_module_finalize(JModule mod).

Function name Change from C mapping

public
String

getAttr(String label
);

Return null instead of NULL.

public
String

getLocalAttr(String label
);

Return null instead of NULL.

public void setAttr(String label,

String value
);

To remove a variable from the environment, set it to NULL. It is impossible to distinguish
the case of a non-existent variable from the case of a variable set to NULL.

5.1.5 How to

• Load the modules A and B on group MyGroup without synchronization between A
and B:

Let’s create a module C that embeds modules A and B. The command line is:

padico-mkmod --driver=multi -DGroupID=MyGroup -o C A B

5.1. PADICOTM MODULE SPECIFICATION 47

The generated XPMD is:

<mod name="C" driver="multi">
<attr label="GroupID">MyGroup</attr>
<unit>A</unit>
<unit>B</unit>

</mod>

• Load the modules A and B on a group with a synchronization between A and B.

Let’s create modules C, group-A and group-B. group-A embeds module A and group-
B embeds module B. The command lines are:

padico-mkmod --driver=multi -o group-A A
padico-mkmod --driver=multi -o group-B B
padico-mkmod --driver=pkg -DGroupID=MyGroup -o C group-A group-B

The generated XPMD are:

<mod name="C" driver="pkg">
<unit>group-A</unit>
<unit>group-B</unit>

</mod>

<mod name="group-A" driver="multi">
<unit>A</unit>

</mod>

<mod name="group-B" driver="multi">
<unit>B</unit>

</mod>

5.1.6 Traces usage

In order to debug some code in Padico, it contains an option that enables traces. We’ll see
here what we need to know in order to use them.

First your core needs to be build with the –padico-trace-on option, or, if you used to use
the padico-core-assistant, in “debug” mode.

Then you can enable the traces on the GUI, by choosing the “Trace” box. If you only
do that, traces of all modules will be enabled. But there are many traces in Padico code.
That would be a little hard to find the interresting messages. You can give an XML file that
describes a policy. It looks like that:

<!-- Your comments ! -->
<tracepolicy defaultlevel="5">

<info mod="yes" level="yes" func="yes" />
<show mod="Circuit-PacketFilter" />
<show mod="Circuit" />
<show mod="bench-Circuit" />

</tracepolicy>

48 CHAPTER 5. PADICOTM REFERENCE

In this example, we ask for Circuit, Circuit-PacketFilter and bench-Circuit traces. The default
level of trace in the code is also set to 5. We wants that the traces show the module, the level
of the trace and the name of the function that called the trace function. The trace level is
given when you write the function: padico_out(trace_level, printf_args). Then
all messages with a higher trace level won’t appear. Messages of lower trace level of all
modules will appear.

5.2 PadicoTM Services Reference

5.2.1 VIO

VIO is a virtualization of an I/O system. VSock virtualizes the sockets and only provides
a minimal subset of the standard BSD socket programming interface. VIO goes further
by providing a full socket API support — packets and stream, blocking and non-blocking,
select() primitives — and by handling primitives for other I/O operations such as files
and stdio. The “socket” part of VIO may be seen as VSock 2.0.

Used by: RemoteControl, Sh-driver, VLink, SocketFactory

Requires: NetAccess

Status: stable (except non-blocking I/O: beta).

API: C/C++ header file is <Padico/VIO.h>.

Note: implicit use possible without touching the code through SysW (see below).

5.2.2 Circuit

Circuit provides an abstraction of the Madeleine channels. Basically, it handles sub-groups
and multiplexing over Madeleine. Reception is handled through callbacks.

Used by: Madico, MPI, MPCircuit

Status: stable

API: C/C++ header file is <Padico/Circuit.h>.

5.2.3 VRP

VRP stands for Variable Reliability Protocol. It is a module which implements a protocol
with a tunable loss tolerance for high performance over a WAN. VRP is not built by default.

Used by: (none)

Requires: NetAccess

Status: experimental

API: C/C++ header file is <Padico/VRP.h>.

5.2. PADICOTM SERVICES REFERENCE 49

5.2.4 Console

Console enables users to interactively steer each process on its own console for debugging
purposes.

Used by: none (end-user interface)

Status: stable

API: interactive use, type help for help.

Note: the PadicoTM processes should be launched in console mode to be able to use the
Console service.

5.2.5 Sh-driver

The Sh-driver modules provides the bin/sh driver (see drivers in Section 5.1.3).

Used by: none (end-user interface)

Status: stable

API: driver bin/sh for padico-mkmod

5.2.6 RemoteControl

RemoteControl is the server-side for remote steering through padico-control (see sec-
tion 3.1.3).

Used by: padico-control (remotely)

Requires: VIO

Status: stable

API: XML schema for XML Padico Command Language (TODO)

Attributes: ControlHost, ControlPort, ControlKey (mandatory)

Three attributes (ControlHost, ControlPort and ControlKey) are set by
padico-control for RemoteControl to be able to callback padico-control.

5.2.7 CORBA-Gatekeeper

CORBA-Gatekeeper is the server-side for remote steering through CORBA (e.g. by
padico-run, see Section 3.1.2).

Used by: padico-run (remotely), padico-mpirun (remotely)

Requires: CORBA-orb (CORBA-omniORB-4.0.6 for ex.), shared-CORBA

Status: stable

API: IDL file is $PADICO_ROOT/include/Padico/gatekeeper.idl

50 CHAPTER 5. PADICOTM REFERENCE

5.2.8 Madico

Provides a Madeleine interface over Padico. The Madico service is usually loaded by
padico-mpirun, not directly by the end-user (see the MPI Tutorial).

Used by: MPI, user code

Requires: Circuit

Status: stable

API: C/C++ header file is <Padico/Madico.h>

5.2.9 shared-CORBA

Provides a high performance, shareable CORBA implementation.

Used by: CORBA-Gatekeeper, user code

Requires: VIO.

Status: stable

API: C++ header file is <Padico/CORBA.h>; use Padico::ORBwherever you would have
used CORBA::ORB. See CORBA tutorial in Section 3.4.

Attributes: NameService (mandatory), ORBgiopMaxMsgSize (optional)

External package: omniORB-4.0.6 (included in the standard distribution). See Section ??
for help.

5.3 PadicoTM Core Interface

5.3.1 Puk

Puk stands for “Padico micro-kernel” (or Padico µ-kernel). It is not a regular module like
the others. It is responsible for module management and provides basic operations. When
a PadicoTM process is started, it automatically loads Puk (hard-coded). Then Puk loads the
startup module it was given; for the moment, the startup module must contain a PadicoTM
core.

Used by: PadicoTM, NetAccess

Status: stable

API: C header is <Padico/Puk.h>. Puk functions begin with padico_* or puk_*. Puk
is not designed to be used directly by the end-user. It aims at being used by core
modules. However, Puk padico_* function may be safely used by the user; on the
other side, puk_* function should be considered as low level interface – neither multi-
threaded nor thread-aware – and should be used with extreme care. It is better to use
the PadicoTM core module (see below).

5.4. COMMANDS MANUAL 51

Attributes: configured through command-line flags at boot time; recognized flags:
--padico-core <core>, --padico-startup <module>, --padico-session
<module>, --padico-trace-{on|off}.

5.3.2 PadicoTM

Used by: NetAccess, all services modules (VIO, Circuit, etc.)

Status: stable

API: C/C++ header for PadicoTM is <Padico/PadicoTM.h> (public API), low level Mar-
cel/Madeleine C header available as <Padico/PM2.h> (internal use).

Attributes: PADICO_STARTUP, PADICO_SESSION (automatically set by Puk in regard to
the command-line flags).

5.3.3 NetAccess

NetAccess is the PadicoTM network access manager. It provides callback facilities for effi-
cient polling strategies, topology management, collective operations/synchronization.

Used by: Circuit, VIO

Status: stable

API: C/C++ header is <Padico/NetAccess.h>.

Attributes: (none)

NetAccess provides access to the network topology. See <Padico/na-Cluster.h> for
more information. NetAccess functions begin with padico_na_*. Specialized NetAccess
functions for system I/O (system sockets, files, etc.) are padico_io_*. Functions for ex-
tended Madeleine channels (multiplexed, callback-driven) are padico_xchn_*.

5.4 Commands manual

Each command supports (or should support!) the --help flag.

padico-mkmod

Usage: padico-mkmod [options] [files] [driver specific flags]
Options:

-o <module> Place the output into module <module>
-D<label>=<value> Defines an attribute <label> with the value <value>
-Xlinker Ignored (for compatibility with other linkers)
--padico-core <core> Use the core flavor <core>
--driver=<driver> Use Puk driver <driver> for the module
--option=<opt> Driver-specific option <opt> given to driver
--requires <module> Set a dependency on module <module>
--bootable Makes the module bootable
--quiet Do not show progress information

52 CHAPTER 5. PADICOTM REFERENCE

-h|--help Display this information
Files:

*.o *.a *.so For binary driver

*.class For java/class driver

*.sh For bin/sh driver
<module> For pkg and multi drivers

Driver specific flags:
-L... -l... For binary driver
-cp For java/class driver

Note:
-o is mandatory.
Unless the $PADICO_CORE environment variable is set, --padico-core is mandatory

5.4.1 padico-launch

Usage: padico-lauch <binary> [<arg>...]

padico-mkcore

Usage: padico-mkcore <core> [options] [-- <args>]

<core> Name of the output core flavor

Options:
--mad-{tcp|bip|gm|mx|sisci|elan} Chose Madeleine network drivers
--madico Enable Madico driver in Madeleine
--marcel-{mono|smp|numa} Chose Marcel flavor
--marcel-trace Enable Marcel traces
--marcel-pthread (experimental)
--marcel-profile Enable Marcel profiling (experimental)
--pm2-debug Switch PM2 in debug mode
--pm2-verbose Verbose mode for compiling PM2
--enable-debug Enable debugging symbols flag
--enable-optimize Enable optimize flag
--modules=<startup_modules>

Remaining args are passed directly to pm2-flavor.

padico-boot

Usage: padico-boot [options] <core> <host>... [-- <arg>...]
Options:

-D<label>=<value> Define attribute <label> with value <value> in
the base environnment.

--init[:<host>[,<host>...]]=<init>
-i<init> Add file <init> to startup sequence. <init> must

be an absolute file name or a name without path
(will be searched for in $PADICO_ROOT/etc/init.d/)
Argument -i may be given multiple times.
(only on host <host>)

-c[:<host>[,<host>...]][=<xterm>]
--console[:<host>[,<host>...]][=<xterm>]

5.4. COMMANDS MANUAL 53

Start each process in its own console
(only on host <host>, using <xterm> as console)

-d[:<host>[,<host>...]]
--debug[:<host>[,<host>...]]

Start processes in gdb (only on host <host>)
-l[:<host>[,<host>...]][=<logdir>]
--log[:<host>[,<host>...]][=<logdir>]

Log stdout and stderr (into directory <logdir>)
-t[:<host>[,<host>...]][=<trace>]
--trace[:<host>[,<host>...]][=<trace>]

Activate traces, using <trace> file as trace policy
--rsh=<rsh> Use <rsh> to start remote jobs
-s, --sync-start Starts processes sequentially. $LEO_RSH must be "ssh -f"
-x, --xauth Forward X authority (experimental)
-f <file> Add hotnames given in <file>
-m <mod> Defines a session module "inline"
--ld[=<loader>] Use an alternate dynamic linker/loader (expert only)
--verbose Show environment content while booting
-h, --help This help

<core> Name of a PadicoTM core
<host> Host list to start Padico on (at least one host)
<arg> Arguments given to Puk on each process

-c, -d and -l are mutually exclusive.
Several -d:<host> and -c:<host> may be given.

padico-run

usage:
/home/cfrezier/padico/i486/bin/padico-run <method> <args>...
With <method>:

--soap
--corba
--get-default
--set-default <method>

padico-run -corba:

Options:
-c|--cleanup Deletes the node fromn the database if it does not answer
-a|--async Does not wait the command completion
-q|--quiet Does not output any information

Commands:
-k|--kill Kills PadicoTM
-l|--loadmod <mod> Loads module <mod>
-r|--runmod <mod> Runs module <mod>
-lr|--loadrunmod <mod> Loads and runs module <mod>
-u|--unload <mod> Unload module <mod>
-m|--lsmod Lists the module loaded
-g|--group <name> "<node>,..." Creates a group named <name>
-n|--lsnodes Lists the running nodes
Commands are sent to the given hosts, or to every known host if no host is explicitly given.

54 CHAPTER 5. PADICOTM REFERENCE

-r and -lr take additionnal parameters given to the module.

Chapter 6

Questions & Answers

• I get an abort on the last instruction of a C++ code.
Tip: Sure there is a throw in the C++ code. As padico_module_run is called by a C
code, the abort occurs when the unwrapping of the stack can no longer go on.

• My C++ code does not seem to load/start/unload.
Tip: Do not forget to declare padico_module_init and the likes as extern "C"!

• Could I share the CORBA NameService between 2 sites running PadicoTM?
Tip: padico-run lists the known running nodes through the use of a CORBA Nam-
ingService managed by Ugo. Chose which is site 1 and which is site 2. Each
command given here should be executed on the appropriate site. On site 1, start
a name server if none is running: mycorba-ns --start. On site 2, stop the
name server if it is running: mycorba-ns --stop. On site 1, get the reference
of the name server: mycorba-ns --get-ref. On site 2, register this reference:
mycorba-ns --register <copy/paste ref of site 1 here>.

55

56 CHAPTER 6. QUESTIONS & ANSWERS

Appendix A

License

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

57

58 APPENDIX A. LICENSE

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

59

whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for

60 APPENDIX A. LICENSE

making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other

61

circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

62 APPENDIX A. LICENSE

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your

63

school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

64 APPENDIX A. LICENSE

Appendix B

Advanced configuration

B.1 PadicoTM framework advanced configuration

This section describes the custom installation and advanced configuration mechanisms; it is
an alternate to the quick install described in Section 2.3.1. Most users may safely skip this
section.

Directories. Each Padico package uses three directories:

the source directory is where you unpacked the Padico packages. It is referred to as
PadicoTM-r4762M/ in this manual. For example, the source directory for PadicoTM
is PadicoTM-r4762M/PadicoTM/;

the build directory is where you build Padico packages. It is a user-created directory where
you run the configure command. Each Padico package should have its own build
directory. Padico does not allow the build directory to be the same as the source direc-
tory, i.e. cd PadicoTM-r4762M/PadicoTM; ./configure is not allowed;

the install directory is where Padico is installed. It is chosen through the --prefix= flag
for configure. It is referred to as <padico_root> in this manual. We require that
all Padico packages have the same install directory, i.e. you should give the same
--prefix= configuration flag to all Padico packages. In order to use Padico, the en-
vironment variable $PADICO_ROOT must be set to point to the directory where Padico
is installed. It is usually done by the etc/padico-setup.{csh|sh} script (see Sec-
tion 2.3.2).

The source and build directories are used to compile Padico and its services. It is safe to
delete them only if you do not plan to build any new service.

Using an existing PM2 installation. the Padico package contains its own version of
PM2. However, it is possible to use your own PM2 installation. Make sure that the en-
vironment variable PM2_ROOT is set and points to a valid PM2 installation before run-
ning padico-install or configuring PadicoTM. Padico will generate on-the-fly PM2 fla-
vors when you setup a new PadicoTM core. PM2 flavors for Padico are stored in <build-
dir>/PadicoTM/opt/pm2/.

65

66 APPENDIX B. ADVANCED CONFIGURATION

Step by step installation of Padico packages. The first step consists in installing the com-
mon parts. For example, if the sources are in $HOME/PadicoTM-r4762M, to be build in
$HOME/PadicoTM-r4762M/build, and to install Padico in $HOME/Padico, type:

cd PadicoTM-r4762M

admin/padico-init $HOME/Padico

to create the Padico installation directory and to copy the installation tools. You may need
to tweak variables stored into $PADICO_ROOT/etc/padico-install.conf. Then we
configure, build and install myCORBA:

mkdir build/<arch>/myCORBA
cd build/<arch>/myCORBA
make install

Notice that we provide the same prefix as in the first step. myCORBA has to be in-
stalled first. Then we setup myCORBA. The setup assistant is in PadicoTM-r4762M
/myCORBA/package-setup. See Section 4 if you want to manually setup myCORBA with
the mycorba-admin command.

The configure script for PadicoTM takes the well-known flags:

--prefix=PREFIX install Padico in PREFIX directory. PREFIX must be an absolute path;

--{enable|disable}-optimize

--{enable|disable}-debug

--{enable|disable}-trace

plus the PadicoTM-specific flag to statically link the BIP Myrinet driver

--{enable|disable}-bip

Using alternative compilers. It is possible to explicitly specify which compiler to use. For
example, we can type:

setenv CC gcc-3.0.4
setenv CXX g++-3.0.4
setenv JAVAC $HOME/bin/jikes
setenv JAVA /soft/jdk/bin/java
setenv JDK /soft/jdk/

and then quick install with ./padico-install or custom install by beginning with
admin/padico-init.

B.2 Custom core & services setup

The core assistant takes some decisions in order to simplify the core & services setup. For
a full customized setup, you should build separately each part. Custom setup is often the
preferred way when you want to create several core flavors. If you do not know whether to
use the core assistant or the custom core setup, then you probably want the core assistant
described in Section 2.3.3! This section describes how to do by hand what is usually done by
padico-core-assistant and padico-corba-startup.

B.2. CUSTOM CORE & SERVICES SETUP 67

Build a Padico core. First, we build a PadicoTM core. For example, we choose here a
flavor tuned for mono-processor Myrinet machines including full optimization, without de-
bugging symbols. We chose to call it mono-bip. The command line is:

padico-mkcore mono-mx --mad-mx --marcel-mono --pm2-opt

--mad-mx tells Padico to use the BIP/Myrinet driver. Other available choices are
--mad-sci for SISCI/SCI, --mad-tcp for TCP/IP.

--marcel-mono tells Padico to use the mono-processor flavor of Marcel. Use
--marcel-smp for multi-processor machines.

--marcel-smp is
not fully supported
yet.

--pm2-opt tells Padico to use the optimized flavor of PM2 (i.e. with the -O4 compiler
flag). Other available choices are --pm2-g to include debug symbols (i.e. -g com-
piler flag) and --pm2-inherit for the same debug/optimize flags as global Padico
configuration. The core assistant defaults to --pm2-inherit.

Build additional services. We have now a PadicoTM core named mono-bip. The core by
itself is pretty useless without other services such as CORBA, MPI, etc. In this example, we
will build the CORBA service. The name of the service is ORB. It requires the VIOk service.
The basic remote control is CORBA-Gatekeeper. The command line looks like this:

padico-mkservice --padico-core mono-bip --full-build VSock ORB CORBA-Gatekeeper

It can take a long time (e.g. 20 minutes) to build the ORB service.
The services, like any PadicoTM module, are core-specific, i.e. services are built for a

given PadicoTM core flavor. Almost each command takes a --padico-core <core> flag
to specify which core is concerned. It may be omitted if you set the environment variable
PADICO_CORE.

Make a startup module We now build a startup module which contains all the modules to
automatically load at boot time. The syntax is a little bit tricky :-) This command lines builds
a module named mono-mx-with-CORBA which contains the PadicoTM core mono-bip
– it contains support for Myrinet, mono-processor threads, and is an optimized flavor –,
the ORB module with its required module VSock, and a basic CORBA gatekeeper named
CORBA-Gatekeeper. It contains a reference to the already-running CORBA name service,
assuming it has been started with mycorba-ns (see section 4.2) or referenced by myCORBA.

padico-mkmod --padico-core mono-mx --driver=pkg --bootable \
mono-bip VSock ORB CORBA-Gatekeeper -o mono-bip \
-DNameService=‘mycorba-ns --getref‘

Do not forget the --bootable flag, otherwise the module would not be bootable and would
not be suitable to play the role of a startup module! The --driver=pkg flag tells Padico that
this module is only made out of other modules and contains no code. The NameService
attribute is mandatory for CORBA.

68 APPENDIX B. ADVANCED CONFIGURATION

Appendix C

Hello CORBA Examples

C.1 The Hello-CORBA client (Hello-client.cc)

/* Padico tutorial 3: "CORBA client"

* PadicoTM/Examples/Tutorial/03-HelloCORBA/Hello-client.cc

*/

#include <iostream>
#include <Padico/CORBA.h>
#include <Padico/COSNaming.h>
#include <Padico/Module.h>

#include "Hello.h"

PADICO_MODULE_DECLARE(Hello_client);
PADICO_MODULE_INIT(client_init);
PADICO_MODULE_RUN(say_hello);

static Padico::ORB_ptr orb;
static CosNaming::NamingContext_ptr naming_context;
static Hello_server_ptr server;
static CosNaming::Name server_name;

int client_init(void)
{

orb = Padico::ORB_init();

try
{

CORBA::Object_var ns_ref =
orb->resolve_initial_references ("NameService");

naming_context = CosNaming::NamingContext::_narrow (ns_ref);
}

catch(...)

69

70 APPENDIX C. HELLO CORBA EXAMPLES

{
padico_print("Hello-client: cannot resolve NameService.\n");
return -1;

}

server_name.length (1);
server_name[0].id = CORBA::string_dup("default");
server_name[0].kind = CORBA::string_dup("HelloServer");

try
{

CORBA::Object_var server_obj = naming_context->resolve(server_name);
server = Hello_server::_narrow(server_obj);

}
catch(...)

{
padico_print("Hello-client: cannot resolve HelloServer in NameService.\n");
return -1;

}

return 0;
}

int say_hello(int argc, char**argv)
{

try {
server->Hello();

}
catch(...)

{
padico_print("Hello-client: exception while invoking Hello server\n");
return -1;

}
return 0;

}

C.2 The Hello-CORBA server (Hello-server.cc)

/* Padico tutorial 3: "CORBA server"

* PadicoTM/Examples/Tutorial/03-HelloCORBA/Hello-server.cc

*/

#include <iostream>
#include <Padico/CORBA.h>

C.2. THE HELLO-CORBA SERVER (HELLO-SERVER.CC) 71

#include <Padico/COSNaming.h>
#include <Padico/Module.h>
#include "Hello.h"

PADICO_MODULE_DECLARE(Hello_server);
PADICO_MODULE_INIT(server_init);
PADICO_MODULE_FINALIZE(server_finalize);

class Hello_server_impl : virtual public POA_Hello_server
{
public:

void Hello(void)
{

::std::cout << "**********************************" << ::std::endl;
::std::cout << "********** Hello world! **********" << ::std::endl;
::std::cout << "**********************************" << ::std::endl;

}
};

static Padico::ORB_ptr orb;
static PortableServer::POA_var poa;
static PortableServer::POAManager_var poa_manager;
static CosNaming::NamingContext_var naming_context;
static Hello_server_impl* server;
static PortableServer::ObjectId_var server_oid;
static CosNaming::Name server_name;

int server_init(void)
{

orb = Padico::ORB_init();

CORBA::Object_var poa_ref = orb->resolve_initial_references ("RootPOA");
poa = PortableServer::POA::_narrow (poa_ref);
poa_manager = poa->the_POAManager();
poa_manager->activate();

CORBA::Object_var ns_ref =
orb->resolve_initial_references ("NameService");

naming_context = CosNaming::NamingContext::_narrow (ns_ref);

server = new Hello_server_impl;
server_oid = poa->activate_object(server);

server_name.length (1);
server_name[0].id = CORBA::string_dup("default");
server_name[0].kind = CORBA::string_dup("HelloServer");

72 APPENDIX C. HELLO CORBA EXAMPLES

naming_context->rebind(server_name, server->_this());
return 0;

}

void server_finalize()
{

naming_context->unbind(server_name);
// poa->deactivate_object(server_oid);
delete server;

}

